B. S	P.S.B. GOVT.DEGREE COLLEGE,LAMBGAO c. [CHEMISTRY, PAPER I : INORGANIC CHEMISTRY (PAPER CO TEACHING PLAN FOR ACADEMIC SESSION 202	DDE : CH-30	1]– III Year
	COURSE TEACHER: DURGA PRASAD	22-23	
	COURSE TITLE AND OTHERS PECIFICATIO	N	
Course Title Course No. Credits:	e:	INORGANIC CHEMISTRY PAPER-I Six (Five for Theory and One for Tutorial) End-term examination: Internal assessment: 50 This course contains basic idea of Inorganic Chemistry	
Maximum	Marks:		
Course Des	scription		
UNIT	ΤΟΡΙϹ	Number of Lectures	Name of the Course teacher
UNIT I	I.Metal-ligand bonding in Transition Metal Complexes Limitations of valance bond theory, an elementary idea of crystal field theory	3	Durga Prasad
	crystal field splitting in octahedral, tetrahedral and square planner complexes, factors affecting the crystalfield parameters.	3	
	 II. Thermodynamic and Kinetic Aspects of Metal Complexes A brief outline of thermodynamics stability of metal complexes and factors affecting the stability, 	4	
	stability constants of complexes and their determination, substitution reactions of square planar complexes.	4	
UNIT II	III.Magnetic Properties of Transition Metal Complexes Types of magnetic behavior, methods of determining magnetic susceptibility, spin only formula,	3	Durga Prasad
	L-S coupling, correlation of µs and µeff values,orbital contribution to magnetic moments, application of magnetic moment data for 3d-metal complexes	4	
	IV. Electronic spectra of Transition Metal Complexes Types of electronic transitions, selection rules for d-d transitions, spectroscopic ground states, spectrochemical series,	4	
	spectrochemical series, spectrochemical series,Orgel-energy level diagram for d1 and d9 states, discussion of the electronic spectrum of [Ti(H2O)6]3+ complex ion.	4	
UNIT III	V. Organometallic Chemistry Definition, nomenclature and classification of organometallic compounds,	3	Durga Prasad
	Preparation, properties, bonding and applications of alkyls and aryls of Li, Al, Hg, Snl.	3	

	Metal carbonyls: 18 electron rule, preparation, structure and nature of bonding in the mononuclear carbonyls.	4	
UNIT IV	VII. Hard and Soft Acids and Bases (HSAB) Classification of acids and bases as hard and soft, Pearson's HSAB concept,,	3	Durga Prasad
	acid-base strength and hardness and softness, Symbiosis, theoretical basis of hardness and softness, electro negativity and hardness and softness, Drago wayland equation, donor acceptor number.	4	
	electro negativity and hardness and softness, Drago wayland equation, donor acceptor number.	4	
UNIT V	VIII. Bioinorganic Chemistry Essential and trace elements in biological processes.	2	Durga Prasad
	metalloporphyrins with special reference to hemoglobin and myoglobin, cooperative effect, Biological role of alkali and alkaline earth metal ions with special reference to Ca2+	4	
	Biological role of alkali and alkaline earth metal ions with special reference to Ca2+	4	
Year and 6 p duration of c	alculation for total number of lectures is done on the basis o eriods. 5 for theory and 1 for tutorial] allotted for the course one lecture is 45 min. Ition of maximum marks for internal assessment will be acco	e per weel	during the Year. The
 Puri, Sharn R.L. Madar Selected to 	ise, Inorganic chemistry, E.L.V.S na and Kaliya,Principles of inorganic ch emistry, Milestone Po n, Chemistry for degree students, S. Chand & company, New opics in Inorganic Chemistry, Malik, Tuli and Madan, S. Chand ash, Modern Inorganic Chemistry, S. Chand & company, New	Delhi d & compa	any, New Delhi
Counter sig	ned [Principal] Sig. [Head]	S	ig. [Course teacher]

L

В	P.S.B. GOVT. DEGREE COLLEGE,LAMBGAON . Sc. [CHEMISTRY, PAPER-II: ORGANIC CHEMISTRY] (PAPER CODE : C TEACHING PLAN FOR ACADEMIC SESSION 2022-23	H-302]– III	Year
	COURSE TEACHER: DURGA PRASAD		
	COURSE TITLE AND OTHERS PECIFICATION		
Course Title		ORGANIC PAPER-II	CHEMISTRY
Course No. Credits:	:	Six (Five for Theory and One for Tutorial) End-term examination: Internal assessment: 50 This course contains basic idea of organic chemistry	
Maximum I	Marks:		
Course Des	scription		
UNIT	ΤΟΡΙϹ	Number of Lectures	Name of the Course teacher
UNIT I	I. Spectroscopy Nuclear magnetic resonance (NMR) spectroscopy, Proton magnetic resonance (1H NMR) spectroscopy, nuclear shielding and deshielding,	2	Durga Prasad
	chemical shift and molecular structure, spin spin splitting and coupling constants, areas of signals, interpretation of 1H NMR,	2	
	spectra of simple organic molecules such as ethyl bromide, ethanol, acetaldehyde, 1,1, 2-tribromoethane, ethyl acetate, toluene and acetophenone	2	
	Problems pertaining to the structures elucidation of simple organic compounds using UV, IR and 1H NMR spectroscopic, techniques	2	
UNIT II	II. Organometallic Compounds Organomagnesium compounds: the Grignard reagents, formation, structure and chemical reactions.	2	Durga Prasad
	Organozinc compounds: formation and chemical reactions. Organolithium compounds: formation and chemical reactions.	3	
	III. Organosulphur Compounds Nomenclature, structural formation, methods of formation and chemical reactions of thiols,	2	
	thioethers, sulphonic acids, sulphonamides and Sulphaguanidine	2	
	IV. Hetrocyclic Compounds Introduction: Molecular orbital picture and aromatic characteristics of pyrrole, furan,thiophene and pyridine,	2	
	Methods of synthesis and chemical reactions with particular emphasis on the mechanism of electrophilic substitution, Mechanism of nucleophilic substitution reaction in pyridine derivatives, Comparison of basicity of pyridine, piperidine and pyrrole.	3	

Intro			
	duction to condensed five and six membered heterocycles,	2	
	aration and reactions of indole, quinoline and isoquinoline		
	special reference to Fisher indole synthesis,		
Skra	up synthesis and Bischler-Nepieralski synthesis, Mechanism	2	
	ectrophilc substitution reactions of indole, quinoline and		
isoq	uinoline.		
UNIT III V. Ca	arbohydrates	3	Durga Prasad
Class	ification and nomenclature, Monosaccharides, mechanism		
of os	azone formation, interconversion of glucose and fructose,		
chair	n lengthening and chain shortening of aldoses.		
Conf	iguration of monosaccharides, Erythro and threo	2	
diast	ereomers, Conversion of glucose intro mannose,		
Form	nation of glycosides, ethers and esters, Determination of		
ring	size of monosaccharides, Cyclic structure of D(+)-glucose,		
Mec	hanism of mutarotation. Structures of ribose and		
deox	yribose		
An ir	troduction to disaccharides (maltose, sucrose and lactose)	2	
and	oolysaccharides(starch and cellulose) without involving		
struc	ture determination.		
VI. A	mino Acids, Peptides, Proteins and Nucleic Acids:	2	
Class	ification, structure and stereochemistry of amino acids,		
Acid	base behavior isoelectric point and electrophoresis,		
Prep	aration and reactions of O-amino acids,		
Stru	ture and nomenclature of peptides and	3	
prot	eins, Classification of proteins, peptide structure		
dete	rmination, end group analysis, selective hydrolysis of		
pept	ides, classical peptide synthesis, solid-phase peptide		
synt	nesis.		
Struc	ctures of peptides and proteins, Levels of protein structure,	3	
Prote	ein denaturation/ renaturation; Nucleic acids :		
Intro	duction, constituents of nucleic acids, Ribonucleosides and		
ribor	nucleotides, The double helical structure of DNA.		
UNIT IV VII. F	ats, Oils and Detergents	3	Durga Prasad
Natu	ral fats, edible and industrial oils of vegetable origin,		
com	mon fatty acids, glycerides, hydrogenation of unsaturated		
oils,			
Sapo	nification value, iodine value, acid value, Soaps, synthetic	2	
dete	rgents, alkyl and aryl sulphonates.		
VIII.	Synthetic Polymers	3	
Addi	tion or chain-growth polymerization, Free radical vinyl		
poly	merization, ionic vinyl polymerization, Ziegler-Natta		
poly	merization and vinyl polymers,		
	lensation or step growth-polymerization, Polyesters,	3	
plya	mides, phenol formaldehyde resins, urea formaldehyde		
resir	s, epoxy resins and polyurethanes, Natural and synthetic		
	ers, Elementary idea of organic conducting polymers.,		
		1	İ
rubb	ynthetic Dyes	2	
rubb IX. S	ynthetic Dyes ur and constitution (electronic Concept), Classification of	2	
rubb IX. S Colo	· ·	2	

	Alizarin and Indigo.			
UNIT V	X. Organic Synthes Acidity of O-hydrog acetoacetate,	is via Enolates gens, alkylation of diethyl malona [.]	te and ethyl	Durga Prasad
		acetoacetate: the Claisen conde erism of ethylacetoacetate.	ensation, 2	
	Alkylation of 1, 3-c enamines.	dithianes, Alkylation and acylatio	on of 2	
Year and 6 p duration of	periods. 5 for theory an one lecture is 45 min.	nber of lectures is done on the ba d 1 for tutorial] allotted for the co ks for internal assessment will be	ourse per week during	the Year. The
 Morrison a S.M. Mukł Elementar 	Stereochemistry of orga and Boyd, Organic chen herji and Singh. Reactio y Spectroscopy, Y.R. Sh	anic compounds, Willey. nistry, Prentice-Hall, New Delhi. n mechanism in organic chemistr arma, S. Chand try, Oxford University Press (Repli		
Counter sig	ned [Principal]	Sig. [Head]	Sig. [Co	urse teacher]

P.S.B. GOVT.DEGREE COLLEGE,LAMBGAON B. Sc. [CHEMISTRY, PAPER III : PHYSICAL CHEMISTRY (PAPER CODE : CH-303]– III Year TEACHING PLAN FOR ACADEMIC SESSION 2022-23

		23			
	COURSE TEACHER: DURGA PRASAD				
	COURSE TITLE AND OTHERS PECIFICATION				
Course Ti	Course Title:		PHYSICAL CHEMISTRY		
		PAPER-III			
Course N	0.:	-	for Theory and		
Credits:		One for T			
			m examination:		
Maximun	n Marks:		Internal		
			essment: 50		
Course D	escription	This course contains basic			
		idea of Physical Chemistry			
UNIT	ΤΟΡΙϹ	Number	Name of the		
		of	Course teacher		
		Lectures			
UNIT I	I. Introducton:	2	Durga Prasad		
	Black-body radiation, Planck's radiation law, photoelectric				
	effect, heat capacity of solids,				
	Bohr's model of hydrogen atom (without derivation) their	2			
	solution of overall solution and its defects,.				
	Compton effect, de-Broglie's hypothesis, the Heisenberg's	2			
	uncertainty principle, Hamiltonian Operator.				
	II. Elementary Quantum Mechanics:	3			
	Schrödinger wave equation and its importance, physical				
	interpretation of the wave function, postulates of quantum				
	mechanics, particle in a one dimensional box.				
	Schrödinger wave equation for H-atom, separation into three	3			
	equations (without derivation), quantum numbers and their				
	importance, hydrogen like wave functions, radial wave				
	functions, angular wave functions.				
	Molecular orbital theory, basic ideas – criteria for forming	3			
	M.O. from A.O., construction of M.O's by LCAO – H2+ ion,				
	calculation of energy levels from wavefunctions,				
	physical picture of bonding and anti-bonding wave functions,	2			
	concept of (σ , σ^* , π , π^* orbitals and their characteristics,				
	Hybrid orbitals – sp, sp2, sp3,				
	calculation of coefficients of A.O's used in sp and sp2 hybrid	2			
	orbitals and interpretation of geometry. Introduction to				
	valence bond model of H2, comparison of M.O. and V.B.				
	models				

UNIT II	III. Physical Properties and Molecular Structure:	3	Durga Dracad
	Optical activity, polarization – (Clausius – Mossotti equation),	5	Durga Prasad
	orientation of dipoles in an electric field, dipole moment,		
	induced dipole moment,.		
	measurement of dipole moment temperature method and	2	
	refractivity method, dipole moment and structure of	2	
	molecules,		
	magnetic properties-paramagnetism, diamagnetism and	2	
	ferromagnetic, Magnetic susceptibility, its measurements and	2	
	its importance.		
	IV. Spectroscopy:	3	Durga Prasad
	Introduction: Electromagnetic radiation, regions of the	5	Duiga i lasaa
	spectrum, basic features of different spectrophotometers,		
	statement of the born-oppenheimer approximation, degrees		
	of freedom.		
	Rotational Spectrum: Diatomic Molecules: Energy levels of a	3	
	rigid rotor (semi-classical principles), selection rules, spectral		
	intensity, distribution using population distribution		
	(Maxwell-Boltzmann distribution) determination of bond		
	length, qualitative description of non-rigid rotor, isotope		
	effect.		
	Vibrational Spectrum: Infrared Spectrum: Energy levels of	3	
	simple harmonic oscillator, selection rules, pure vibrational	-	
	spectrum, intensity, determination of force constant and		
	qualitative relation of force constant and bond energies,		
	effect of anharmonic motion and isotope on the spectrum,		
	idea of vibrational frequencies of different functional groups.		
	Raman Spectrum: Concept of polarizability, pure rotational	2	
	and pure vibrational Raman spectra of diatomic molecules,		
	selection rules.		
	<i>Electronic Spectrum:</i> Concept of potential energy curves for	3	
	bonding and anti-bonding molecular orbitals, qualitative		
	description of selection rules and Franck-Condon principle.		
	Qualitative description of σ , π and T M.O. their energy levels		
	and the respective transition.		
UNIT IV	V. Photochemistry:	2	Durga Prasad
	Interaction of radiation with matter, difference between		_
	thermal and photochemical processes,		
	Laws of photochemistry: Grothus – Drapper law, Star Einstein	3	
	law, Jablonski diagram depicting various processes occurring		
	in the excited state,		
	qualitative description of fluorescence, phosphorescence,	2	
	non- radiative processes (internal conversion, intersystem		
	crossing),		
	quantum yield, photosensitized reactions – energy transfer	2	
	processes (simple examples), Kinetics of Photo chemical		

UNIT V	VI. Solutions, Dilute Solutions and Colligative Properties:	3	Durga Prasad
	Ideal and non-ideal solutions, methods of expressing		
	concentrations of solutions, activity and activity coefficient.		
	Dilute solution,		
	colligative properties, Raoult's law, relative lowering of vapour	3	
	pressure, molecular weight determination. Osmosis, laws of		
	osmotic pressure, its measurement and determination of		
	molecular weight from osmotic pressure.		
	Elevation of boiling point and depression of freezing,	3	
	Thermodynamic derivation of relation between molecular		
	weight and elevation in boiling point and depression in		
	freezing point.		
	Experimental methods for determining various colligative	2	
	properties. Abnormal molar mass, Van't Hoff factor, Colligative		
	properties of degree of dissociation and association of solutes		
	calculation for total number of lectures is done on the basis of 18		
	periods. 5 for theory and 1 for tutorial] allotted for the course pe f one lecture is 45 min.	er week dur	ing the rear. The
	bution of maximum marks for internal assessment will be accordi	na ta tha ri	ulas of the
University		ng to the rt	lies of the
,			
Reference	Books:		
• Atkins P	Books: W. Physical Chemistry, Oxford University Press		
ReferenceAtkins PBell D.W	Books: W. Physical Chemistry, Oxford University Press . Physical Chemistry, Thomson Press	lhi	
Reference • Atkins P • Bell D.W • R.L. Mac	Books: W. Physical Chemistry, Oxford University Press . Physical Chemistry, Thomson Press an, Chemistry for degree students, S. Chand & company, New Del		and Distributors
Reference • Atkins P • Bell D.W • R.L. Mac • Puri and	Books: W. Physical Chemistry, Oxford University Press . Physical Chemistry, Thomson Press an, Chemistry for degree students, S. Chand & company, New Del Sharma and Pathaniya, Principles of Physical Chemistry, Mileston		and Distributors,
Reference • Atkins P • Bell D.W • R.L. Mac • Puri and New Delhi	Books: W. Physical Chemistry, Oxford University Press . Physical Chemistry, Thomson Press an, Chemistry for degree students, S. Chand & company, New Del Sharma and Pathaniya, Principles of Physical Chemistry, Mileston	e Publisher	and Distributors,
Reference • Atkins P • Bell D.W • R.L. Mac • Puri and New Delhi	Books: W. Physical Chemistry, Oxford University Press . Physical Chemistry, Thomson Press an, Chemistry for degree students, S. Chand & company, New Del Sharma and Pathaniya, Principles of Physical Chemistry, Mileston	e Publisher	and Distributors,
Reference • Atkins P • Bell D.W • R.L. Mac • Puri and New Delhi • Behl and	Books: W. Physical Chemistry, Oxford University Press . Physical Chemistry, Thomson Press an, Chemistry for degree students, S. Chand & company, New Del Sharma and Pathaniya, Principles of Physical Chemistry, Mileston Tuli, Essential of Physical Chemistry, S. Chand & Company, New D	e Publisher	